The gaskets listed in this section work or they wouldn’t be in the catalog. Gasket failure will fall into two categories. One being improper installation and the other using the wrong gasket for the wrong application. If you have any questions about the installation of a gasket or it’s intended usage please ask before purchasing.

I use the same gaskets as you purchase in all my applications with very few problems. I very seldom install a gasket without some sort of sealer. The type of sealer I use depends upon the application, and whether I will be taking the part off soon or maybe never. We sell several different sealers. The next time you purchase some gaskets or parts, be sure to ask for the right sealers to use for proper installation.

TECH TIP: When installing a part with many studs or bolts always torque in steps. Start in the middle of the part and work your way toward the outside in a clockwise movement. If the bolt/stud calls for 85# torque use steps of 25#, 50#, 75#, and then 85#. Here is the most important part. Repeat each step until you feel no movement in any of the bolts/studs. If you feel movement in any of the bolts/studs repeat that step until you don’t. If you are using oil as a lubricant follow the standard torque specifications for the size of the bolt. If you are using a lubricant such as LUC-4 assembly lube (seen in the BOLTS & STUDS section) be sure to follow the recommended torque specifications from the manufacturer since being a more slippery lubricant than oil it will have a heavier clamping load than wanted using the same specs as you would for oil.

DMR-179307 Complete overhaul gasket set. Includes composite intake gasket, exhaust gasket, DMR-5538 valve cover gaskets, front cover gasket, fuel pump gasket, water pump gasket, thermostat gasket, DMR-5496 oil pan gasket set, neoprene rear main seal, Fel-Pro Perma-Torque head gaskets and front cover seal. Fits 307 Oldsmobile engines.

DMR-179350 Same as DMR-179350 except fits 330 and 350 Oldsmobile engines.

DMR-179403 Same as DMR-179350 except fits 403 Oldsmobile engines.

DMR-179455 Same as DMR-179350 except fits 400, 425 and 455 Oldsmobile engines.

EDE-9300 Edelbrock Gasgacinch sealer. For use on gaskets as a contact cement.

TECH TIP: When using one of our neoprene rear crank seals always lay a 1/16” wide bead of silicone across each side of the cap starting with the seal to the outside edge of the cap to prevent oil seepage after installation.

SIL-18692 Neoprene rear main seal for small block Oldsmobile. Replaces leaky rope rear main seal. Fits 330, 350 and 403 Oldsmobile engines. The rear of the crank should be polished for best result.

SIL-68135 Same as SIL-18692 except fits 400, 425, and 455 big block Oldsmobile engines.

DMR-5538 Thicker than most thick valve cover gaskets this double extra thick .300” cork valve cover gaskets fits 330-350-400-425-455 Oldsmobile engines. Especially helpful when more rocker arm clearance is needed.

DMR-5538-2 Thicker than most thick valve cover gaskets this double extra thick .300” two ply cork and Velpoloid valve cover gaskets fits 330-350-400-425-455 Oldsmobile engines. Especially helpful when more rocker arm clearance is needed.

SCE-279076 Premium valve cover gaskets by SCE. The 3/16” gaskets are excellent sealing with the bottom side being cork and laminated to the top side which is silicone. Also order EDE-9300 gasket sealer for use on the valve cover side.

After the engine has been run and cooled back down, retorque the intake bolts. The centermost four bolts should be torqued working in a clockwise direction and working outward in steps of 15, 25, and 35 ft pounds of torque. After the engine has been run and cooled back down, retorque the intake bolts.

Do not drop any debris into the engine. After scraping off all old gasket material, gently rub your finger over the surface to feel for any remaining gasket. A putty knife or gasket scraper can be used. When you feel all old gasket material has been removed, finish cleaning the surface with an evaporating cleaner like brake cleaner being careful not to inhale the fumes or spray any into your eyes and don’t get any on your paint job. You can spray the cleaner onto a rag and wipe it over the surface but this will probably leave a large amount of lint which must be removed. If you have never used a take-apart oil filter you can’t imagine the amount of lint and silicone that plugs up an oil filter on a new engine. Therefore take my word for it and avoid both wherever possible.

Now is the time to remove all the pieces of paper towel that you stuffed into each intake port to keep the dirt out. I usually use a shop vacuum to remove the worst of the debris and then gently remove the paper towels being careful not to drop anything into the engine. Be sure to inspect each runner for debris as it can hold a valve open and cause damage. Now remove all the shop towels as gently as you laid them into the lifter valley again being careful not to drop any debris into the engine. Visually inspect the lifter valley and intake runners. Be sure to run your finger thru any pools of oil feeling for debris. After cleaning the intake with the same process blow out the intake with compressed air and visually inspect for any debris. You can’t be too clean.

Trial fit the intake and strip gasket on the engine. Be sure the gasket is as large as the intake ports in the head and intake. If not, trim the gasket with a razor blade. Try looking down the intake carburetor opening to be sure the ports in the intake line up with the ports in the head. It is OK for the intake port to be slightly smaller than the head but never the other way around. What we are looking for here is to see that the intake is not to high or to low in relation to the head. Hand start all bolts to be sure you don’t need to do any custom grinding for bolt head clearance. Before removing the intake for final assembly measure the gap between the block end rails and the intake. Take the intake block-end-rail gaskets furnished and throw them away. This is one of the few places to use silicone. One at a time lay a 1/16” to 1/8” bead of silicone around each of the water ports in the head staying 1/4” away from the inlet hole. Now lay a bead of silicone about 1/8” to 3/16” tall (or taller if above measurement indicated necessary) from the bottom of one of the rear water ports, across the rear of the block end-rail, to the bottom of the other rear water port thus connecting the two rear water ports. Do the same with the front water ports.

Determine which way the intake strip gaskets will go and place them bottom side up on a piece of newspaper. Now apply to each gasket an even coat of Edelbrock Gasgacinch (EDE-9300) around each intake port hole. This will quickly soak into the gasket material. Apply a second coat to both gaskets.

Lay the gaskets one at a time on the heads with the Gasgacinch sealer side down, being careful to line up perfectly with the intake runners and bolt holes. Hand install 2 bolts in the outermost 2 holes in each gasket. This will prevent the gasket from moving. Gently apply pressure around the water ports to press out the silicone and set the gasket in place. Clean any excess silicone from the water port. Now repeat the above Gasgacinch and silicone sealing process to the top side of the gasket including running silicone from each water port to the opposite side thus applying a second coat to the block end-rails.

Take one final look into the engine and intake for debris and you are now ready to install the intake. Carefully remove the four intake bolts holding the intake gasket in place. Have ready, within reach, the four outermost bolts to align the intake. Slowly and gently position the intake onto the engine, holding by the carburetor hole, and align the bolt holes while doing so. Keeping one hand on the intake install the four corner bolts by hand, for a few threads, to secure the intake from sliding off the block due to the slippery silicone. Now install and gently snug up all remaining bolts. Starting with any one of the centermost four bolts torque the bolts working in a clockwise direction and working outward in steps of 15, 25, and 35 ft pounds of torque. After the engine has been run and cooled back down, retorque the intake bolts.
GASKETS

SCE-279101 Velpoloid high temperature intake gaskets by SCE. Fits 330-350-403 Oldsmobile engines and is .062 thick. Recommended for aluminum or steel intake manifolds. Helps eliminate vacuum leaks and insures a positive seal. For best results use with EDE-9300 Edelbrock Gasgacinch sealer. See technical article at beginning of gasket section for proper installation procedure. Port size 1.300 x 2.000 x .062 thick. Gasket has silicone seal around water and intake ports on one side. Use EDE-9300 on other side.

SCE-279102 Same as SCE-279101 except fits 400-425-455 Oldsmobile engines. Port size 1.400 x 2.400 x .062 thick.

SCE-179101 Velpoloid high temperature intake gaskets by SCE. Fits 330-350-403 Oldsmobile engines and is .062 thick. Recommended for aluminum or steel intake manifolds. Helps eliminate vacuum leaks and insures a positive seal. For best results use with EDE-9300 Edelbrock Gasgacinch sealer. Port size 1.300 x 2.000 x .062.

SCE-179102 Same as SCE-179101 except fits 400-425-455 Oldsmobile engines. Port size 1.400 x 2.400 x .062.

SCE-179103 Same as SCE-179101 except fits Batten heads on Oldsmobile 350-455. Port size as cast.

SCE-179104 Same as SCE-179101 except fits Batten heads on Oldsmobile 350-455 with large port. Port size 1.500 x 2.580.

FEL-MS-96027 O.E.M. stamped, embossed steel intake manifold stock replacement gasket. Recommended for stock cast iron manifolds or aftermarket aluminum manifolds when recommended by the manufacturer. Fits 330-350-403 Oldsmobile engines.

FEL-MS-96004 Same as FEL-MS-96207 except fits 400-425-455 Oldsmobile engines.

SCE-079186 Pro-Copper copper exhaust gaskets by SCE. Cure your leaking exhaust gasket problems. Seals irregular surfaces tightly, since they are made from .062 solid annealed copper. Won’t shrink, crack or blow out. Use sealer part number EDE-9300. Does not have center divider. Designed for motor home or high heat applications.

SCE-4079 Embossed Raised Bead solid copper exhaust gasket. Designed for header and high heat applications and has center divider.

DMR-8025-E Same as DMR-8025 except raised port.

SCE-279182 Exhaust gasket for Batten heads on Oldsmobile engines 330-455. Wire reinforced graphite.

SCE-4250 Pro-Copper solid copper exhaust collector gaskets with embossed seal. Fits 2.5” collectors with 3 bolt. Won’t shrink, crack, or blow out. Use sealer part number EDE-9300.

SCE-4300 Same as SCE-4250 except fits 3” collectors with 3 bolt.

SCE-4350 Same as SCE-4250 3.5” collectors with 3 bolt.

COM-5808 Multi layer steel Head Gaskets by Cometic comprised of three layers of Stainless steel. The outer layers of the gasket are embossed and coated on both sides with a flouroelastomer rubber to meet the demands of a variety of harsh sealing environments, load conditions, and surface finishes. The center or shim layer of the gasket is comprised of an uncoated Stainless steel layer, which can be varied to accommodate multiple thickness requirements. Great for aluminum heads to cast iron blocks. Fits 4.125 bore Oldsmobile engine. Available in .027”, .030”, .036”, .040”, .045”, .051”, .060”, .065”, .071”, or .074” thickness. Using sealer part number PER-80697 will help seal surfaces with a coarser machining surface.

COM-5809 Same as COM-5808 except fits 4.200 bore Oldsmobile engine.

COM-5810 Same as COM-5808 except fits 4.400 bore Oldsmobile engine.

COM-5811 Same as COM-5808 except fits 4.270 bore Oldsmobile engine.
SCE-S79064 Pro-Copper solid annealed copper head gaskets by SCE for Oldsmobile engines. 4.060” bore. Won’t shrink, crack, or blow out. Requires no sealant. Ready to install. ISC (Internal Combustion Seal) head gaskets have precision fluid seals that are offset rather than stacked. The malleable copper forms around beads to limit lateral deformation providing a tight dependable seal. BUILT IN INTERNAL COMBUSTION SEAL (O’RING). NO O’RING NECESSARY. Available in .043”, .050”, .062”, .072”, .080” thickness.

SCE-S79154 Same as SCE-S79064 except 4.155” bore.
SCE-S79204 Same as SCE-S79064 except 4.200” bore.
SCE-S79254 Same as SCE-S79064 except 4.250” bore.
SCE-S79384 Same as SCE-S79064 except 4.380” bore.

SCE-T79063 Pro-Copper solid annealed copper head gaskets by SCE for Oldsmobile engines. 4.060” bore. Won’t shrink, crack, or blow out. Requires no sealant. Ready to install. “Titan” head gaskets have precision fluid seals that are offset rather than stacked. The malleable copper forms around beads to limit lateral deformation providing a tight dependable seal. Available in .032”, .043”, .050”, .062”, .072”, .080” thickness. Block must be o’rung.

SCE-T79153 Same as SCE-T79063 except 4.155” bore.
SCE-T79203 Same as SCE-T79063 except 4.200” bore.
SCE-T79253 Same as SCE-T79063 except 4.250” bore.
SCE-T79383 Same as SCE-T79063 except 4.380” bore.

SCE-079062 Pro-Copper solid annealed copper head gaskets by SCE for Oldsmobile engines. 4.060” bore. Won’t shrink, crack, or blow out. Use sealer part number PER-80697. Available in .021”, .032”, .043”, .050”, .062”, .072”, .080”, .093” thickness. Block must be o’rung.

SCE-079152 Same as SCE-079062 except 4.155” bore.
SCE-079202 Same as SCE-079062 except 4.200” bore.
SCE-079252 Same as SCE-079062 except 4.250” bore
SCE-079382 Same as SCE-079062 except 4.380” bore.

FEL-1155 This new high performance head gasket by Fe-Pro has a stainless steel armor (the metal formed around the combustion opening) with a preflattened steel wire ring inside the armor. The gasket has a composite body comprised of a stainless core with Kevlar reinforced facing material and Silicone coatings on both sides of the gasket. 4.250” gasket bore allows this gasket to be used on any big block Oldsmobile including a .125” overbore. .039” compressed thickness. 9.2 gasket cc. Because of the stainless steel core on this gasket it is suitable for marine applications. This gasket has been used with good success on NOS equipped engines as long as detonation does NOT occur. Torque to fastener specifications. Let set over night. Back off 1/2 turn and retorque one bolt at a time starting in normal torque sequence.

FEL-8653PT Perma-Torque Torque head gaskets by Fel-Pro Pro. Fits 307 Oldsmobile engines. .040” thick. A must for a low compression (10 or less) perfect seal.
FEL-8506PT Same as FEL-8653PT except fits 77-80 350 Oldsmobile engines.
FEL-8507PT Same as FEL-8653PT except fits 403 Oldsmobile engines.
FEL-81171PT Same as FEL-8653PT except fits early (68-76) 330-350-400-425-455 Oldsmobile engines.
DMR-27229 Gasket to mount oil filter mount to side of block. Used in DMR-5400-R remote oil filter adapter.
DMR-382160 New O.E.M. oil pump cover plate to housing 010 thick gasket. Will not fit high volume oil pumps (where the drive gear comes thru the cover). Fits all V-8’s, 1964 to 88.
SCE-17908 Thermostat housing gasket to replace that leaking gasket or use when replacing thermostat.
FEL-TCS-13417 Front cover gasket set by Fel-Pro includes: front cover gasket, water pump gasket, front cover seal, and front oil pan seal. This gasket is .015 thick.
SCE-17900 Front timing cover gasket. This gasket is .030 thick.

SCE-17904 Front timing cover gasket. This gasket is .060 thick for additional thrust bolt clearance.

SCE-17901 Water pump gasket.

SCE-17906 New OEM gasket for Oldsmobile mechanical fuel pump or DMR-5950 fuel pump block off.

SCE-31542 .041x15’ roll 304 stainless O-ring wire and installation kit.

SCE-31563 .062x15’ roll 304 stainless O-ring wire and installation kit.

TECH TIP: When calling for a cam recommendation, it’s important to know what your compression ratio is. If you would like to get your combination to work properly with the least amount of trouble, find out everything you can (heads, intake, exhaust, transmission, gearing, weight of the vehicle, rpm range, etc.). This way, you will be prepared to answer any questions I might have for you to get the combination right. For instance, you do not want to design an engine around a cam; you would want to design an engine for it’s main purpose. Then, give me a call to explain your combination and what you’re looking for. I would just like to get it as close as I can the first time.

Oldsmobile Big Block Cylinder Heads

<table>
<thead>
<tr>
<th>ID</th>
<th>Engine</th>
<th>Casting #</th>
<th>CC</th>
<th>Intake</th>
<th>Exhaust</th>
<th>Year</th>
<th>Unleaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>400-425</td>
<td>383821</td>
<td>80</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>A</td>
<td>425-2BBL</td>
<td>383821</td>
<td>80</td>
<td>2.000-45</td>
<td>1.625-45</td>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>425</td>
<td>389395</td>
<td>80</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>425-2BBL</td>
<td>389395</td>
<td>80</td>
<td>2.000-45</td>
<td>1.625-45</td>
<td>66</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>400-425</td>
<td>389395</td>
<td>80</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>66</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>400-425</td>
<td>394548</td>
<td>80</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>67</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>425-2BBL</td>
<td>394548</td>
<td>80</td>
<td>2.000-45</td>
<td>1.625-45</td>
<td>67</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>425-2BBL</td>
<td>394548</td>
<td>80</td>
<td>2.000-45</td>
<td>1.625-45</td>
<td>68-69</td>
<td>No</td>
</tr>
<tr>
<td>C/CA</td>
<td>455</td>
<td>394548</td>
<td>79</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>68-89</td>
<td>No</td>
</tr>
<tr>
<td>D/DA</td>
<td>455</td>
<td>400370</td>
<td>72</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>68-69-W30</td>
<td>No</td>
</tr>
<tr>
<td>E</td>
<td>455-2BBL</td>
<td>403686</td>
<td>80</td>
<td>2.000-45</td>
<td>1.625-45</td>
<td>70</td>
<td>No</td>
</tr>
<tr>
<td>E</td>
<td>455</td>
<td>403686</td>
<td>79</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>70</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>455</td>
<td>404438</td>
<td>79</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>70-W30</td>
<td>No</td>
</tr>
<tr>
<td>G</td>
<td>455-2BBL</td>
<td>409100</td>
<td>80</td>
<td>2.000-45</td>
<td>1.625-45</td>
<td>71-72</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>455</td>
<td>409100</td>
<td>79</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>71</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>455</td>
<td>409100</td>
<td>80</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>72</td>
<td>Yes</td>
</tr>
<tr>
<td>GA</td>
<td>455</td>
<td>409100</td>
<td>80</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>72-W30</td>
<td>Yes</td>
</tr>
<tr>
<td>GA</td>
<td>455</td>
<td>409100</td>
<td>80</td>
<td>2.000-45</td>
<td>1.625-30</td>
<td>72-76</td>
<td>Yes</td>
</tr>
<tr>
<td>H</td>
<td>455</td>
<td>409160</td>
<td>79</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>71-W30</td>
<td>Yes</td>
</tr>
<tr>
<td>J</td>
<td>455-2BBL</td>
<td>411783</td>
<td>79</td>
<td>2.000-45</td>
<td>1.625-45</td>
<td>73-76</td>
<td>Yes</td>
</tr>
<tr>
<td>J</td>
<td>455-2BBL</td>
<td>411783</td>
<td>79</td>
<td>2.000-45</td>
<td>1.625-30</td>
<td>74-75</td>
<td>Yes</td>
</tr>
<tr>
<td>K</td>
<td>455</td>
<td>413191</td>
<td>79</td>
<td>2.070-30</td>
<td>1.625-45</td>
<td>73-76</td>
<td>Yes</td>
</tr>
<tr>
<td>KA</td>
<td>455</td>
<td>413191</td>
<td>79</td>
<td>2.000-45</td>
<td>1.625-30</td>
<td>73-75</td>
<td>Yes</td>
</tr>
<tr>
<td>KA</td>
<td>455</td>
<td>413191</td>
<td>79</td>
<td>2.070.30</td>
<td>1.625-45</td>
<td>76</td>
<td>Yes</td>
</tr>
</tbody>
</table>